Purification and characterization of a novel enzyme, N-carbamoylsarcosine amidohydrolase, from Pseudomonas putida 77.

نویسندگان

  • J M Kim
  • S Shimizu
  • H Yamada
چکیده

N-Carbamoylsarcosine amidohydrolase, a novel enzyme involved in the microbial degradation of creatinine in Pseudomonas putida 77, was purified 27-fold to homogeneity with a 63% overall recovery through simple purification procedures including successive ammonium sulfate fractionation, DEAE-cellulose chromatography, and crystallization. The relative molecular mass of the native enzyme estimated by the ultracentrifugal equilibrium method is 102,000 +/- 5000, and the subunit Mr is 27,000. The Km and Vm values for N-carbamoylsarcosine are 3.2 mM and 1.75 units/mg protein, respectively. Ammonia, carbon dioxide, and sarcosine were formed stoichiometrically from N-carbamoylsarcosine through the action of the purified enzyme preparation. N-Carbamoyl amino acids with a methyl group or hydrogen atom on the amino-N atom and possessing glycine, D-alanine, or one of their derivatives as an amino acid moiety served well as substrates for N-carbamoylsarcosine amidohydrolase. N-Carbamoylsarcosine, N-methyl-N-carbamoyl-D-alanine, N-carbamoylglycine, and N-carbamoyl-D-alanine were hydrolyzed at relative rates of 100, 12.8, 9.8, and 7.3, respectively, by the enzyme. N-Carbamoyl derivatives of D-tryptophan, D-phenylalanine, and those of some other amino acids including D-phenylglycine and p-hydroxy-D-phenylglycine were also hydrolyzed by the enzyme. For the L-isomers of all N-carbamoyl amino acids tested there was no production of ammonia, carbon dioxide, or the corresponding amino acids due to the action of the enzyme. Cupric, mercuric, and silver ions inhibited the enzyme strongly, and some thiol reagents were also found to be inhibitory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, Purification and Characterization of Proline Dehydrogenase from a Pseudomonas putida POS-F84 Isolate

The purpose of this study was to isolate and characterize Proline Dehydrogenase (ProDH) enzyme frommicroorganisms isolated from soil in Iran. Isolation and screening of L-proline degradative enzymes from soilsamples was carried out. The isolate was characterized by biochemical markers and 16S rRNA geneanalysis. The target ProDH was purified and the effects of pH and temperatur...

متن کامل

Purification and Characterization of a Thermostable Neutrophilic Metalloprotease from Pseudomonas sp. DR89

A novel neutrophilic metalloprotease was isolated from Pseudomonas sp. DR89 isolate which was identified ina mineral spring in Iran. The enzyme was purified from the isolate to 21-folds in a three-step procedure involving ammonium sulfate precipitation, Q-Sepharose ionic exchange and Sephadex G-100 gel filtrationchromatography. Resuts showed that the enzyme was active at high temper...

متن کامل

Cloning, Expression and Purification of Creatininase From Pseudomonas Pseudoalkaligene KF707 in E. coli.

Creatinine amidohydrolase(EC 3.5.2.10) catalyzes the reversible conversion of creatinine to creatine. Creatininase in combination with other enzymes is used for detection of creatinine in serum and urine which is of significant value for detection of renal, muscular and thyroid functions. The aim of this study was to produce recombinant creatininase enzyme in E.coli expression system to use it ...

متن کامل

Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase.

Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-e...

متن کامل

The Enhancement of Biodesulfurization Activity in a Novel Indigenous Engineered Pseudomonas putida

Background: The combustion of sulfur-rich fossil fuels leads to release of sulfur oxide pollution in the environment. In biodesulfurization process, an organism is able to remove sulfur from fossil fuels without decreasing the caloric value of those substrates. The main aim of this research was to design a recombinant microorganism to remove the highest amount of sulfur compounds in fossil fuel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 261 25  شماره 

صفحات  -

تاریخ انتشار 1986